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A study iS made of waves caused by a sudden crack in an elastic medium 
under stress. An exact solution is found for the plane problem, when the 
crack occurs along a strip of width 1. The results are applied to an 
asymptotic investigation of the three-dimensional problem. 

Reference [ll contains an approximate solution of the problem con- 

sidered below. Maue [21 considered a related problem for a semi-infinite 
crack. 

1. A sudden break occurs along an infinitely long plane strip of 

width 1 in an elastic medium which is in a state of plane stress. The 
state of stress before the occurrence of the crack is assumed to be uni- 
form. The normal stress and normal displacement on the surface of crack 
are continuous (the crack does not open), while the tangential stress 
vanishes, so that the crack undergoes a tangential displacement. 

We place the origin of the coordinates on the right edge of the 
crack (Fig. l), the z-axis being directed along its edge, while the y- 
axis is normal to its plane. 

‘lhe problem of finding the displacement field engendered by such a 

crack reduces to solving the equations for the displacement potentials 

where h and n are the Lam& coefficients and p is the density. ‘The 
initial conditions are zero; the boundary conditions for y = 0 and 
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- 1 < x < 0 have the form 

CT”- YV - %k v+ = v- , zr;: = I& = z = const (1.2) 

The indices plus and minus denote the corresponding limiting values 
of the stress and displacement components in the upper and lower half- 

planes for y = 0. 'l%e shear stress acting on the 

Y 

~ 

strip - I < x < 0 before the occurrence of the 
crack is denoted by T. For the displacements u: and 

-1 b u along the z- and y-axes we have 

s 
arp alp -- 

2 u=z av' 
r = 9 + !T 

a?! 

Fig. 1. The boundary value problem (1.2) for equations 
(1.1) in the exterior of the cut is easily trans- 

formed into a problem for the upper half-plane y >O with the following 
conditions at y = 0 

(1.3) 

%u = 0 (-oo<~<oQ), zlcy = 0 (-Z<<<O), s=u*+t @<-A s>O) 

For this the obvious symnetry properties of the displacement field 

in the present problem 

u+ (x, y) = - u- (z, - y), v+ (z, Y) = v- (5, - $4) t1.4 

should be used from the beginning and then the solution represented as 
the sum of a plane transverse wave propagating upwards and an auxiliary 
solution which also must satisfy (1.3). 

The problem (1.1) and (1.3) is a particular case of the problem of 
diffraction of a plane wave by a slot of finite width. The solution for 
a semi-infinite slot was obtained by Filippov, Friedman, and Maue [3-51. 

2. At the instant of cracking the front of a plane transverse wave 

leaves the strip, while on the edges 
longitudinal and transverse waves with 
cylindrical fronts are formed (Fig.2). 
In the construction of a wave formed 
at one of the edges, it is clearly un- a- 
necessary to consider the second edge -L X 

for t < Z/U. Hence, for that interval Fig. 2. 

of time it suffices to obtain a solu- 
tion of equation (1.1) for zero initial conditions and boundary condi- 
tions of the form 

u m=o (--<<x<oo). v,=o (z<O), ZJ =nij (x>O) (2.1) 
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%‘e denote this solution by q1 and yI and the corresponding displace- 
ments by u1 and ul. 

For t > l/o the cylindrical waves formed at the edges proceed along 

the surface of the crack and slide off it, generating new waves. ‘Lhe 

fronts of the secondary waves near the right edge of the crack, which 

are excited by the waves from the left edge, are depicted in Fig. 3. 

l’le displacements in the neighborhood of the right edge are repre- 

sented as the sum of three fields: the displacement field of the primary 

wave from the right edge, the field of the 

primary wave from the left edge, and the dis- 

placement field of the secondary wave. The con- 

struction of the last may be carri,ed out without 

consideration of the left edge. For this it is 

necessary to obtain a solution of (1.1) satisfy- 

ing the conditions (2.1), where in place of u0 

one must write - ul(-x- 1, t). Exactly the same 

thing occurs near the left edge of the cut. For 
Fig. 3. t < 21/n the displacements in the medium will be 

described by a plane wave, and by the potentials 

of the primary and secondary waves from both edges. For t > 21/a waves 

of the third order arise, and so forth. The construction of waves of 

higher orders is similar to the construction of secondary waves. Thus 

the problem formulated above reduces to successively finding solutions 

of system (1.1) satisfying conditions of type (2.1), where in place of 

ua there is a function of the coordinates and time corresponding to 

horizontal displacements in the wave arriving from the opposite edge. 

These solutions are constructed in a similar manner as in E6,7I. 

Applying the two-sided Laplace transform with respect to x and the one- 

sided Laplace transform with respect to t, for which the transform vari- 

ables are q and p, respectively, one obtains from (1.1) and (2.1) func- 

tional equations relating the transforms of the tangential stress lXY 

and displacement u for y = 0. ‘Ihe Wiener-, ‘Iopf-Fok method [81 is used to 

find from these equations the transform of the displacement u and to 

construct the transforms of the potentials for y >O. We omit the calcu- 

lations, which are similar to those in f6,71. In view of the fact that 

completely identical waves are generated at the opposite edges, we re- 

strict ourselves to the consideration of waves arising at the right edge 
of the cut. The transforms of the potentials of the first longitudinal 

and transverse waves have the form 
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liere we denote 

where 6 is the root of the Rayleigh equation 

G (s) E (28 - 1)” + 4s2v(1 - 9) (y2 - 9) = 0 

‘T&e following expressions are obtained for the transforms of 
potentials of the waves generated for t > (n - 1)1/a: 

Y, = SYJV+_~ (S, pll b) 

(2.3) 

the 

(2.4) 

where 0, and I, are defined by formulas (2..2), while !Y, is defined by 
the relation 

W,= (.=$-)mS ll, (Jfd exp (- $5 sk) s_dD+ms (2.5) 

vffl 
k=l 

The integration is performed over the volume sk > y, where k = 1 i 

. . . . m. Furthermore 

(so = 0) 

P (s) = 1/s - ------q P, (s) + m p2 (4 

where 

P, (s) = 8 (1 - 72) s2 (2 - s) (6 + s12 v-G-7 
(2s2 - 1)” ‘-t 16 so (1 - s2) (s* - p) 

e-S i--S) 

P, (s) = - 2 (1 - 72) 
(2s2 - 1)’ (6 + s12 _ e-2g C-4 

~(2~~-1)~+16~~(1-~~)(~~-~~)1I/s+2 
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3. From (2.4) and (2.5) it foll ows that in order to obtain the in- 

verse transforms of on and ‘i’,, it is sufficient to perform the in- 

version with respect to q and p for the expressions 

3% 

s 
n-1 

k=l 

Such a procedure corresponds to performing the in- 

version under the integral sign in formula (2.5), 

where the integrand depends on s and p. However, it 

is convenient to obtain the inverse transforms of the 

expressions obtained from (3.1) by multiplying by p3. 

This means that the third derivatives of the unknown 

functions with respect to time will be found. Fig. 4. 

We denote the inversion integrals with respect to q of the expres- 

sions mentioned above by .4,’ and Rno, respectively, and the complete 

inverse transforms of these expressions by A,, and R,,. 

Transforming to a new variable of integration 5 in the integral A,,‘, 

such that q = - a -‘p cos 5, and introducing polar coordinates r, 8 in 

place of the Cartesian coordinates x and y, we obtain 

A,” = exp (- $ ysk)&\C,, (5) exp [-$cos (5 - e)]dg (3.2) 

k=l r 

‘lhe contour r is located in the strip 0 < Re 5 < 7~ such that the 

difference between the abscissa of a point on it and the point j = 8 is 

less than v/2. Moreover, its position depends on the sign of Im p: in 

order that the inequality 

Re [p cm (5 - O)l > 0 (3.3) 

hold on the entire contour, for Im p > 0 the contour r must coincide 

with r+, while for Im p < 0 it must coincide with r_, as depicted in 

Fig. 4. Carrying out the inversion with respect to p, we obtain 

A = t - $ COS (5 - 0) - $ 2 Sk 

k=l 
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'lhe fulfillment of condition (3.3) makes it possible to interchange 

the order of integration with respect to p and 5. The expression ob- 

tained after this operation may be transformed into an integral over a 

closed contour J, having the form of a figure-eight (Fig. 5) 

'Ihe integrand vanishes at infinity and has in the strip only poles, 

which coincide with the zeros of the function A given by formula (3.4). 

For at -r<(n- l)t these zeros lie on the real axis and do not fall 

within the contour J. Hence -4, = 0. 

For at - I" > (n - 111 there are two zeros of the function A located 

on the straight line Re j = 0 at conjugate points. The coordinates of 

the zero lying in the upper half-strip is given by the formula 

Rence the integral defining A, is equal to the sum of the residues 

at these points 

A,=:-.E 1 
n VaV - ra 

Ro G (0 (3.6) 

Hence we obtain from (2.4) the inverse transform 

of the function (o,, which we will denote by 'p,., 

(pn (r, 8, t) = 0 (at-r <(n - i)1) 

(3.7) 

z= (2)" a "L, rI,-l(lI!f~-l)~~dy 

(atm-r >(a--f)Ef 

'lhe integration is carried out over the volume 

Fig. 5. 
n-1 

2 % < (at - r) / 74 s* >y (k=f....,n-ii) (3.8) 

k=l 

The inverse transform of the function I',, is found in a similar manner, 

but in this one runs into some complications arising from the presence 

in the strip of singularities of fractional order and branch cuts, which 

are connected with the leading waves. For the potential of the cylindri- 

cal waves we obtain 
(3.9) 
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The integration is carried out over the volume 

n-1 
bt - r 

xsk\( --j----s 
k=l 

(k = I,..., n - 1) (3.10) 

In (3.9) the following notation was introduced 

where 7’ is defined by (3.5). A similar method of calculating the in- 
version integral appears in 191. 

‘Ihe foregoing analysis enables one to write the potential of the dis- 
placement field of the longitudinal waves at an arbitrary instant t and 
an arbitrary point r, 8 (the origin of the coordinates is at the right 
edge) in the form 

k=l Sk=1 

where r1 and 8, are the polar coordinates of the same point in a coordi- 
nate system fixed at the left edge of the cut, and 

N, = E (y) + 1, N,_&(y!) -j-l 

Here E(x) is the integral part of x. 

The potential field of the transverse waves has a similar form, if 
the leading wave is not considered. ‘lhus the problem formulated in 
Section 1 is solved. We will now investigate the results obtained. 

4. Be consider the potentials of the first longitudinal and trans- 
verse waves generated at the right edge of the crack. fn accordance with 
(3.7) and (3.9) we have 

These formulas may also be obtained from the solution of the problem 
of diffraction of a transverse wave on the haff-plane E3,41, lhe frontal 
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zone of the longitudinal wave corresponds to 

1 > (at - r) / r 

the relation 

'Ibus <a = 8 is accurate to within small quantities of the order of 

4 [(at - 1-)/r], and from (4.1) it follows that 

'Ihe dependence of the 

frontal zone is shown in 

radial displacement ur =a,,/&- on 0 in the 

Fig. 6, where the quantity 

U= 

proportional to ur, is laid off along the radii of the circle correspond- 

ing to the front of the longitudinal wave. 

In a similar manner the expansion near the front of the transverse 

wave yields 

(4.3) 

where 

K (6) = M (- COS 0) (O<f3<n- ca-1 +f) (4.4) 

K(e)= 
2 (1 - T2) co2 26 sin 8 

[co@ 26 + 16 sin2 20 co@ 0 (co9 I3 - p)] M (COS I3) 
(n- COS-’ wxn) 

'Ihe formula (4.3) is useless in the neighborhood of the point 8 = x/2. 

'Ihe required expression may be obtained from (4.1) if this point is con- 

sidered separately. 

The dependence of the tangential displacement ue =A++/& on 8 in the 

frontal zone of the transverse wave is shown in Fig. 6, where the 

quantity 

proportional to ug, is laid off along the radii of the circle correspond- 

ing to the front of the transverse wave. 

If the distance to the field point greatly exceeds the width 1 of the 

crack, the cylindrical waves generated on the edges may approximately be 

considered to originate from a single center. The dependence of the dis- 
placements on the angle 8 (in the previous coordinate system) in such a 
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combined cylindrical wave may be constructed with the aid of formulas 

(4.2) and (4.3) if it is assumed that for 161 < n/2 the displacements 

yt\ 

Fig. 6. 

coincide with the displacements in the wave 

coming from the right edge of the crack, 

while for TI < 28 < 3a they coincide with 

the displacements in the wave from the left 

edge. Such a dependence for the radial com- 

ponent ur of the first longitudinal wave 

and the tangential component u6 of the transd 

verse wave is shown in Fig. 7. It is essen- 

tial to note that the radial displacements 

in the first longitudinal wave are zero for 

8 = 0, 8 = x/2 and 8 = TI, while the 

tangential displacements in the transverse 

wave are zero for 8 = ? n/4 and 8 = * 3a/4. 

If it is assumed that the crack con- 

sidered here is a model of a seismic center, 

then the above properties of the displace- 

ment field coincide with the properties of the models of Khodno- 

Vvedenskaia [loI and others and do not agree with the corresponding pro- 

perties of the Keilis-Borok model [11I . 

5. The expansion near the front of an arbitrary wave propagating 

from the right edge of the crack may be obtained from formulas (3.7) and 

(3.9), just as in Section 4. We consider ‘p,, as given by (3.7). We denote 

by h, the distance measured inward from the 

first front of this wave 

ho = at - r - (n - 1) 1 (5.1) 

Also, we let 1 >> hull, corresponding to 

the region near the wavefront. Then from (3.8) 
it follows that 

1Jsing this, with the aid of (3.5) it may be 

shown that <u = 8 to an accuracy within small 

quantities of order 4 (ho/Z). Moreover, with 

the same accuracy the result 

Fig. ‘7. 

may be obtained from (2.6). 
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Retaining only the dominant terms in (3.7), we obtain the following 

formula: 

cpn (r, 0, t) = f,(n) -$- sin28 v/1 ho l+mh 
i - cos e 

M (- ~COS8)- 
Jf; -i- ( ) 

(5.2) 

f. @) = _ (2)” m,21/2T F IPl (T) r wl”-l 
r Wd r (1 + 3n / 2) 

However, formula (3.7) describes not only the wave with the front 

h, = 0, the neighborhood of which was just investigated, but also the 

waves with fronts 

hrat-r-(n-m-l)l-ml/r=0 
Sl 

(m=O,l,. . . ) n - 1) (5.3) 

These fronts are caused by the waves which 

propagate from the edges of the crack after 1 

having passed over the crack n - m - 1 times 
\ 

as longitudinal waves and m times as trans- 

,, 

\ 
verse waves. For fixed n and m there will be P,, 

c_ n 1 of such waves, but all of them arise 
Y 1 St 

simultaneously and will have a common front. Fig. 8. 

From among them q-S will be chosen, which 

passed on the last stage as longitudinal waves and posses identical ex- 

pansions near the wavefront which do not coincide with the expansions of 

the waves which passed as transverse waves on the last stage. ?he latter 

waves also have identical expansions. 

We consider the case n = 3 as an illustration. From (2.6) we have 

Sl (Sl + 3) l-b = Pl (4 Pl (sz) I/h - 7) (% - 7) + 

+ P, (Sl) p, (sz) -es, - 7) (3 - 1) + Pl (4 p, (Sl) I%1 - 1) 62 - T) + 
+ p, (4 p, (4 Jhl - 1) (3 - 1) 

Hence the integral in (3.7) breaks up into the sum of four integrals. 

From (2.6) it follows that the first differs from zero for at - r > 21, 

the second and third for at - r > Z(1 + l/y), and the fourth for at - 
r > 21/y. These integrals describe only the potentials of the waves in 

question. Ihe construction of the frontal expansions is carried out by 

means of integrations over small triangular areas with vertices at the 

points (y, y), (1, y), (y, l), (1, 1) as shown in Fig. 8. 

The case of arbitrary R and m is treated similarly. We have 
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where 

The values of h, are given by formula (5.3); in addition, c,, denotes 

the sum of all possible products 

n-2 

* n I I+ %--2 irZl % + Sk-1 
(so= 0) 

where m of the quantities sl, . . . . .snW2 are equal to 1, while the rest 

equal y. 

Similarly, d,,, is the sum of all possible products 

n-2 

where m - 1 of the quantities sl, . . . . ~h_~ equal 

Y. 

1, and the rest equal 

From the above formulas it follows that the order of the discontinu- 
ity at the front of all the waves corresponding to the potential qn is 
less than the discontinuity of the waves with the potential q~n_~ by 3/Z. 
Moreover, the coefficients f,(n) rapidly decrease with increasing n. 
Thus the waves subjected to repeated diffraction are strongly damped. 
It is interesting to note that the frontal expansions of all longitudinal 
waves. starting with the second, have the factor sin 2%. Hence it follows 
that when repeatedly diffracted waves are registered at great distances, 
the radial components of the displacement in the frontal zones will be 
equal to zero on the line which is an extension of the crack and on the 
perpendicular line passing through the middle of the crack. 

The frontal zones of multiply diffracted transverse waves, which are 

described by equations (3.9) to (3.11), are investigated in a similar 

manner. As before, the leading wave is excluded from consideration 
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where 

h,,, = bt - r - 71 (n - m - 1) - ml 

'Ihe coefficients f,(n), cnm and dnlR have the same values as in (5.4). 
The function K(e) is given by formula (4.4). 

The formula for ty,, becomes meaningless at the points where the front 

h,,, = 0 is tangent to: the front of the previous transverse wave (0 = 0), 

the front of the leading wave corresponding to the previous transverse 

wave (6 = cos-1 y), and the front of the leading wave (0 = T - COS-~ y). 

These singular points are shown in Fig. 3. 

It is interesting to note that in all the multiply diffracted trans- 

verse waves the tangential component vanishes in the frontal region for 

8 = f a/4 and 8 = 2 3x/4, i.e. for the same angles as in the first wave 

(4.3). 

6. Consideration is now given to the corresponding three-dimensional 

problem. The state of stress before cracking and the properties of the 

crack (continuity of the normal components of stress and displacement) 

are assumed to be the same as in Section 1, but the crack is assumed to 

be a disk of radius 1. The exact solution of such a problem is not 

known. However, using the results presented above, we may obtain an 

asymptotic representation of the displacement field near the fronts of 

the first longitudinal and transverse waves. 

We denote the constant tangential stress acting on the disk before 

cracking by -rO. We introduce a system of coordinates a, T, 8. The sur- 

face a = const is a half-plane perpendicular to the disk and passing 

through its center. The angle between the line of intersection of the 

half-plane and the disk and the stress T,, is denoted a. We place the 

origin of the coordinate system r, 8 on the half-plane a = con&, at 

the point of its intersection with the edge of the crack. The angle 8 

will be measured from the extension of the radius drawn from the center 

of the disk to the origin of the system of polar coordinates (Fig. 9). 

At the instant of cracking a plane transverse wave leaves the disk, 
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while at the edge there arise longitudinal 
toroidal fronts 

and transverse waves with 

r = at, r = bt (‘3.1) 

(the time t is measured from the instant of cracking), which will be 
joined by the conical front of the primary wave. A section of the set 
of fronts made by a Plane perpendicular to the disk and passing through 
its center is shown in Fig. 2. 

Let at << 1. We consider the displacements in a narrow slice cut out 
of the region of disturbance by the two sides of the angle da. For their 
approximate calculation it is necessary to know the solution of the 
problem when the half-plane y = 0, x < 0 (Fig. 
10) is freed from the tangential stresses 

7x1 
= T,, cos a and T = - T,, sin a as a re- 

su t of the crack. Tifs problem is split into 
two problems: the first concerning waves in 
which the displacements are parallel to the 
plane z = 0, and its solution given by & 

c 
e 

M 

5 

formulas (4.1) to (4.3); the second concern- Fig. 9. 
ing waves with displacements parallel to the 
z-axis. The latter reduces to a well-known problem, and the displace- 
ments in the frontal region of the cylindrical wave have the form 

4 ~osina sin012 (bt-r)3’2 
w=3n---$T- cos 8 If; 

(6.2) 

Thus formulas (6.2), (4.2) and (4.3)(setting T = f,, co8 a in the 
latter) give the frontal expansions of all toroidal waves for at << 2. 

But if the frontal expansion of any wave is known at a certain fixed in- 
stant, then this expansion may be constructed for an arbitrary position 

of the front provided that the rays 
have neither singular lines nor singu- 
lar points (caustics and focuses) [121. 
The fronts of the toroidal waves satis- 
fy these requirements for 101 < r/2. 
Accordingly [121, the principal parts 

5 
of the expansions of u0 and u at the 
points of intersection of a single ray 
with two different positlons of the 
front are related by the formula 

Fig. 10. 

where R,O, RzO and R 1, R, are the principal radii of curvature of the 

fronts at the points of intersection with the chosen ray. It can be 
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shown that for the toroidal fronts (6.1) 

R1°R2" 20 (F” cos 8 + I) . .._ = -A__ 

RI& F(FCOS$+.t) 

951 

6.4) 

where r0 is the radius of the initial position of the toroidal front. 

Using (4.2) and (6.4) for the radial components of the displacement 

in the frontal region of the longitudinal wave, we find for lel < r/z 

4 )/2ym0 I/ire (at - F)~/* 
240 = 3x TP- cos u sin 6 M (- T cos 6) 

I/r(rcosOrl) 
(6.5) 

For the displacement components along the meridian and latitude in 

the frontal regions of the transverse wave we obtain from (4.3)‘ (6.2) 

and (6.4) 

4 y’iq,sinasin e/2 (bt--)3/2 
ucz=-- 3n b2p cos e y-r (r cos 6 -j- I) 

(6.71 

If bt >> 2 then the external portion (161 < n/Z) of any of the 

toroidal fronts may be considered to be approximately a sphere with 

center at the middle of the disk on which the crack occurs. The coordi- 

nates r, 8, (3 introduced above may, with the same accuracy, be treated 

as spherical coordinates with origin at the center of the disk (the 

angle 8 is measured from the plane of the crack). Then. neglecting 1 in 

comparison with r in (6.5) and (6.7), we obtain 

4 I/Zy;rmo ‘I/i+o cos u sin 6 
up = 

33-c Q2P JfGG-6 
~(-~COS6) (or;r)3’2 

2 JfZm0 I/ho cos 3 cos 28 (bt - F)3’2 
Ue=---------~ 

3n b P (cos 6)3’2 
K (6) ~ W3) 

4 v&,, sin u sin 6 / 2 (bt - r)3’2 -A- 
u, - 3n b2p (cos 0)@ r 

These approximate formulas are not applicable for 8 = f s/2. It is 

interesting to note that in the frontal zone of the longitudinal wave 

a r = 0 on the meridians a = u/2 and a = 3v/2, as well as on the equator 

8 = 0. In the transverse wave ~8 = 0 on the same meridians and on the 

two circles of latitudes 8 = f x/4. The displacement ~0 is zero on the 
meridians a = 0 and a = v. 

If it is assumed that the crack considered here is a model of a 

seismic center, then the properties of the displacement field cited 
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above agree with the properties of the Khodno-Vvedenskaia model [IO] 

but disagree with the properties of the Keilis-Borok model [III. 

The author is grateful for the valuable advice and consultation of 

N.V. Zvolinskii in formulating this problem, as well as that of A.A. 

Gvozdev. 
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